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ABSTRACT
Recent adaptive image interpretation systems can reach op-
timal performance for a given domain via machine learning,
without human intervention. The policies are learned over
an extensive generic image processing operator library. One
of the principal weaknesses of the method lies with the large
size of such libraries, which can make the machine learning
process intractable. We demonstrate how evolutionary algo-
rithms can be used to reduce the size of the operator library,
thereby speeding up learning of the policy while still keeping
human experts out of the development loop. Experiments in
a challenging domain of forestry image interpretation exhib-
ited a 95% reduction in the average time required to inter-
pret an image, while maintaining the image interpretation
accuracy of the full library.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: Image Processing and
Computer Vision—Scene Analysis

General Terms
Performance

Keywords
genetic algorithms, machine learning, heuristic search,
Markov decision process, adaptive image interpretation

1. INTRODUCTION
Image interpretation and object recognition are impor-

tant and highly challenging problems with numerous practi-
cal applications. Hand-crafted image interpretation systems
suffer from an expensive design cycle, a high demand for
subject matter and computer vision expertise, and difficul-
ties with portability and maintenance. Consequently, in the
last three decades, various automated ways of constructing
image interpretation systems have been explored [3].
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Figure 1: A fragment of an aerial image taken over a spruce plot

is shown on the left. The right image is the desired interpretation

with spruce canopies labeled in white. It is provided as a part of the

training set.

A promising recent approach casts the image interpre-
tation task as a sequential decision making process over a
library of image processing operators [11]. Interpreting an
image is then reduced to selecting a sequence of operators,
and their parameters, to apply to it. In order to keep the re-
quired human expertise to a minimum, a control policy over
an image processing operator library is machine-learned for
a particular domain. The learning process involves trying all
valid limited length sequences of operators on expert-labeled
training data. A control policy that selects an optimal op-
erator sequence for an input image can then be learned [2,
11]. Figure 1 shows a typical labeling of a forestry image.
While our method is domain-independent, we demonstrate
it in the domain of forest image interpretation. This is a
challenging and practically much-needed task as detailed in
the rest of this section.

Forest maps and inventories have become a critical tool
for wood resource management (planting and cutting), eco-
system governance and wild-life research. Unfortunately,
forest mapping at the level of individual trees is a continuous
and costly undertaking. Canada alone has an estimated 344
million hectares of forests to inventory on a 10-20 year cycle
[13]. At these scales, ground-based surveys are not feasible.
Researchers have therefore turned to developing automated
systems to produce forest maps from airborne images. The
final goal is to measure the type (species), position, height,
crown diameter, wood volume and age class for every tree
in the survey area.

The task of large-scale forest mapping from aerial im-
ages presents formidable challenges, including: (i) mas-
sive amounts of high-resolution data, in order to recog-
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nize and measure individual tree crowns, (ii) construction
and maintenance of (and providing access to) very large
databases; Canada alone has an estimated 1011 trees, (iii)
geo-referencing of airborne images for validation purposes,
and (iv) orthorectification of aerial images, particularly
given that elevation maps are often unavailable at the ac-
curacy required. Of a special interest are the challenges
created by the image content, including variations in sun
and camera angle and the resulting shadow and tree crown
overlap. These challenges have had an adverse effect on spe-
cial purpose algorithms for individual tree identification [1].
The task is substantially challenging even to expert human
interpreters, resulting in up to 40% error in comparison to
ground-based surveys [5].

In this paper we focus on the tree labeling problem as a
first step towards an overall solution. For each image, the
task is to identify all pixels belonging to canopies of trees of
a certain kind. In the illustrations throughout the paper, we
label spruce canopies. Within each image depicting the user
provided ground-truth, the target canopy pixels are labeled
white, while the rest of image is left black (Figure 1).

2. PERFORMANCE ELEMENT:
ADAPTIVE IMAGE INTERPRETATION

In order to appreciate the complexity and challenges of au-
tomated image processing operator library (IPL) selection,
we will first briefly review the performance element: adap-
tive image interpretation systems [11]. Research on such
systems pursues the following objectives: (i) rapid system
development for a wide class of image interpretation do-
mains; (ii) low demands on subject matter and computer
vision expertise; (iii) accelerated domain portability, system
upgrades, and maintenance; (iv) adaptive image interpreta-
tion wherein the system adjusts its operation dynamically to
a given image; (v) user-controlled trade-offs between recog-
nition accuracy and resources utilized.

In order to make such systems adaptive and cross-domain
portable, use of large readily available off-the-shelf IPLs is
favored. However, the domain independence of such libraries
requires an intelligent policy to control the application of li-
brary operators. Operation of such a control policy is a
complex and adaptive process. It is complex insomuch as
there is rarely a one-step mapping from image data to ob-
ject label; instead, a series of operator applications are re-
quired to bridge the gap between raw pixels and semanti-
cally meaningful labels. Examples of the operators include
region segmentation, texture filters, and the construction of
3D depth maps. In this paper, we consider operators (i.e.,
vision routines) with the same function but different instan-
tiations of parameters as different operators. For instance,
a binary threshold routine with the threshold of 128 (i.e.,
all pixels brighter than 128 are turned white, all others are
turned black) is considered a different operator than a bi-
nary threshold routine with the threshold of 200. Figure 2
presents a fragment of the IPL operator dependency graph
for the forest image interpretation domain. Image recog-
nition is an adaptive process in the sense that there is no
fixed sequence of actions that will work well for most im-
ages. For instance, the steps required to locate and identify
isolated trees are different from the steps required to find
connected stands of trees. Therefore, the success of image

Final

Interpretation

Figure 2: A fragment of the state-action graph used in our ex-

periments. States are labeled with their vision data types and have

forest samples shown next to them. Vision operators are shown as

the arcs.

interpretation depends on the ability of the system to learn
an adaptive control policy over an IPL.

In the following we will consider a particular system called
MR ADORE (Multi Resolution ADaptive Object REcog-
nition) [11]. We begin with the Markov decision process
(MDP) ([16]) as the basic mathematical model by casting
the IPL operators as the MDP actions and the results of
their applications as the MDP states (Figure 2). The sys-
tem operates in two modes as follows.

During the off-line training stage (Figure 3), available sub-
ject matter expertise is encoded as a collection of training
images with the corresponding desired interpretation (the
so-called ground truth). Figure 1 demonstrates an example
of such a pair (input image, ground truth label). Off-line
training continues by invoking an off-policy reinforcement
learning algorithm that uses deep backups without boot-
strapping to acquire a value function [16]. Specifically, at
first, all feasible limited-length sequences of IPL operators
are applied to each training image. We refer to this process
as a full expansion. The resulting interpretations are evalu-
ated against the ground truth provided by the user. We use
a pixel-level similarity scoring metric defined as the ratio of
the number of pixels labeled as the target class (e.g., spruce)
by both the system and the expert to the total number of
pixels labeled as the target class by either one of them. Ac-
cording to such a metric, an interpretation identical to the
user-supplied label scores 1 while a totally disjoint interpre-
tation will get a score of 0.

The interpretation scores are then “backed up” along the
IPL operator sequences using dynamic programming. As a
result, the value function Q : S×A → R is computed for the
expanded states S′ ⊂ S and applied actions A′ ⊂ A. The
value of Q(s, a) corresponds to the best interpretation score
the system can expect by applying operator a in state s and
acting optimally thereafter [20]. In reinforcement learning
terms, we are representing the task as a finite horizon non-
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Figure 3: Off-line training stage: all limited-length operator se-

quences are applied to each training image. The resulting image

interpretations are evaluated against the desired label. State-action

rewards are then computed.

Figure 4: On-line operation: the control policy uses an approxi-

mate value function to select the best sequence of operators from the

IPL library. As the result, an image interpretation label is produced.

discounted problem wherein all intermediate rewards are
zero except these collected by outputting an image inter-
pretation. The latter is a positive reward proportional to
the quality of the interpretation.

The collected training set of Q-values {[s, a, Q(s, a)]} sam-
ples a tiny fraction of the state action S × A space. Thus,
we use function approximation methods to extrapolate the
value function onto the entire space. To make approxima-
tion tractable, raw multimegabyte states are reduced to 192
real-valued features and are presented to Artificial Neural
Networks (NNs), which in turn act as function approxima-
tors.

During the on-line interpretation stage, the system re-
ceives a novel image and interprets it, as shown in Figure
4. The previously-learned value function now guides the
control policy to apply vision operators from the IPL li-
brary. Several policies have been tested [11]. In this paper,
we employ the least-commitment policy that uses the value
function greedily.

3. LEARNING TASK: AUTOMATED
OPERATOR SELECTION

During the off-line phase, MR ADORE explores the state
space by expanding the training data provided by the user.
In doing so it applies all operator sequences up to a certain
length. Longer sequences are preferred for better image in-
terpretation, since more operators can be applied for more
precise transformations of the input image into the desired
label. Even the modest increase from four to six opera-
tors can be beneficial, as illustrated in Figure 5. On the
other hand, the size of the state space explored (|S′ × A′|)
increases exponentially with length and therefore the ex-
ploration process quickly becomes prohibitively expensive.
With even a fairly compact operator set of 60 operators
used in [11], the effective branching factor is approximately
26.5. The 292-operator library used in this paper is even
more computationally demanding, with a branching factor
of approximately 47.

Thus, there are three conflicting factors at work: (i)
large off-the-shelf image processing operator libraries are
required to make MR ADORE cross-domain portable, (ii)
long operator sequences are needed to achieve high interpre-
tation quality, and (iii) combinatorial explosion during the
learning phase can impose prohibitive requirements on the
storage and processing power. Fortunately, most domain-
independent operator libraries almost invariably contain nu-
merous redundant or ineffective operators when a specific
domain is considered. This is especially true when we con-
sider closely parameterized instantiations of each operator.
For instance, threshold(200) and threshold(199) are likely to
be too similar to justify inclusion of both in the image pro-
cessing library. Thus, the feasibility of the policy learning
phase as well as subsequent on-line performance critically
depends on the selection of an efficient and compact param-
eterized operator subset for the domain of interest.

Previous systems such as in [2, 11] relied on manual se-
lection of highly relevant non-redundant operators thereby
keeping the resulting IPL small and the off-line state space
exploration tractable. Unfortunately, such solutions defeat
the main objective of MR ADORE-like systems: their au-
tomatic construction for a given domain. Consequently, an
important objective for machine learning research is automa-
tion of operator library selection. In the following, we posi-
tion this task in the context of related research, discuss ap-
plicability of existing methods, and evaluate a novel method
for automated IPL selection.

4. EXISTING METHODS
Selecting an optimal operator library is similar to select-

ing an optimal set of features insomuch as the individual
operators/features are interdependent, possibly redundant,
and their performance can be fully evaluated only within
the target system. Thus, we will first briefly review rep-
resentative feature selection literature and then discuss the
differences.

There are two important dimensions to consider: the type
of search in the space of feature sets and the optimization
criteria. The number of feature sets is exponential in the
number of features and therefore incomplete heuristically
guided search methods are typically preferred. For feature
selection, greedy algorithms have been used [8, 14]. An im-
provement in performance over traditional greedy methods
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Figure 5: Longer operator sequences lead to a better label. From left to right: the original image, desired user-provided label, the best

labels with an operator sequence of length 4, 5, and 6. All labels are superimposed on the source images for illustration purposes.

was later achieved with Genetic Algorithms (GAs) [18] . In
addition to the weighted combination as the fitness func-
tion approach [15, 17], pareto-optimal GAs have been found
successful for feature selection [4, 12].

Along the second dimension, two primary approaches have
been studied. Wrapper methods [9, 19] measure the actual
performance of the target system with a candidate feature
set. While being accurate, such optimization criteria can be
prohibitively expensive in itself. For instance, in the context
of MR ADORE, measuring the performance of a typical op-
erator set on a test suite of 35 images takes around 12 hours
on a dual AMD Athlon MP+ 2400 Linux server [10].

Filter feature selection methods [8, 14] use system-
independent criteria-based feature redundancy and rele-
vance, and similar measures. While such criteria are fre-
quently less expensive to compute, they are decoupled from
the actual performance element and may not always account
for the influence of domain specifics on the quality of a fea-
ture set. Additionally, once features are selected, all of them
are applied to the data token at hand simultaneously. This
is in contrast to image processing operators, which are ap-
plied to the initial image sequentially with one operator’s
output being the next operator’s input. Furthermore, oper-
ator application is guided by a dynamic control policy (e.g.,
best-first NN-guided policy in [2]) and can involve loops and
back-tracking. The fact that many operators also require
parameters while features do not presents another compli-
cation. These factors impede the mapping from operator
sets to the resulting target system performance thereby lim-
iting the applicability of filter methods.

5. PROPOSED NOVEL APPROACH
Wrapper approaches use the correct optimization crite-

ria but can be prohibitively expensive. Filter approaches
are computationally feasible but do not necessarily deal well
with complex interdependencies among operators since they
have no access to performance of the actual system. In our
experiments, we extend the work in [6] and combine the
best of wrapper and filter approaches by using a wrapper-
like search in the space of operator sets. Unlike traditional
wrapper methods, we guide the search with a fast but at the
same time domain-specific fitness function. In order to re-
duce the amount of human intervention, we first tabulate all
operators parameterizations in a uniform fashion, (i.e., us-
ing no domain expertise), and then employ machine learning
methods to acquire the fitness function automatically. These
meta-models ([7]) are generalized over training data to pro-
vide our heuristic search with a quick and accurate ranking

for any given action set. This setup results in a four-step
process, as follows:

Step 1: we evaluate a small collection of selected operator
sets via running each of them with the actual system (MR
ADORE) on a set of training images as shown in Figure
6. For each operator set A, all limited-length sequences of
operators from A are applied to each training image. Each
sequence is assigned an image interpretation accuracy for the
image label it produces. The maximum image interpretation
accuracy for all sequences from operator set A averaged over
all training images is stored as r(A). Each operator set also
incurs an execution cost c(A), which is a measure of the total
time taken for the full expansion with this set. The operator
set’s fitness f(A) is then defined as f(A) = αr(A)−βc(A)+σ
where α and β are scaling coefficient, and σ is an additive
constant. These variables enable the user to control the
trade-offs in a domain specific fashion.

Step 2: step one results in a collection of operator sets
and their fitness values {A, f(A)}. In the second step, we
generalize this collection using machine learning (ML) tech-
niques (Figure 6). As a result, a generalized fitness function
rML is acquired.

Step 3: once machine learning is over, we use the gen-
eralized fitness function rML as the optimization criteria in
genetic algorithms1, in the space of operator sets (Figure 7).

Step 4: the operator sets found by the search are then
evaluated against a set of validation images. The best m
operator sets are output to the user to be used in the system
of interest.

We call this method Genetic Algorithms with Meta Mod-
els (GAMM) and compare it to other operator set selection
methods in our experiments.

6. EMPIRICAL EVALUATION
Experimental results presented below serve to support two

claims made at the onset of the paper. Specifically, sec-
tion 6.1 supports the claim that it is possible to automati-
cally select a highly compact subset of the initial IPL, while
retaining the interpretation performance of the original li-
brary. Section 6.2 shows that such reduction is beneficial not
only due to the great acceleration of the training phase, but
also as it reduces the number of suboptimal labelings for the
control policy to select from. In all experiments, α, β and
σ are set to 0.5. In this way, image interpretation accuracy
and execution cost are given equal bearing in determining
an operator set’s fitness.

1We have also explored other randomized heuristic search
methods such as simulated annealing (SA).
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Figure 6: Supervised machine learning methods are used to generalize fitness of sampled operator sets into an approximation to the actual

fitness criteria.
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Figure 7: GAMM: genetic search is conducted in the space of operator sets. It is guided by a machine-learned approximation to the

performance function of the actual system.

6.1 Accelerated Training
Several experiments were performed in order to determine

the best machine learning algorithms to use as fitness func-
tions within the evolutionary search, as well as parameters
for both the fitness functions and the search methods them-
selves, and which search method to use.

For machine learning fitness functions, while we found
that artificial neural networks (NNs) yielded the best re-
sults, we did experiment with the näıve Bayes (NB) classi-
fier. The best population sizes for the GA were found to
be {100,500}, the best number of iterations were found to
be {1000,10000} and the best mutation rates were found to
be {0.05,0.2}. GAs outperformed Simulated Annealing in
all preliminary experiments [10]. We then ran our four step
method with 72 images of young spruce plots maintained by
the Alberta Research Council in Vegreville, AB. The images
were captured in 24-bit colour at 256×256 pixels per image.
The empirical setup is summarized in Table 1.

We used the Top filter method (Algorithm 1) of selecting
operators to compare against GAMM. This method ranks
operators based upon the average fitness of sets in which
they are present. This is analogous to the +/- statistic in
hockey, where a player on the ice is given a + if his or her
team scores a goal, and is given a - when the opposition
scores. We also compared against a set chosen by a domain-
expert, a randomly selected set and the full set of operators.

Table 1: Cross-validation experiment methods and parameters.

Methods and Data Used
Number of training data 1165
Number of training images 24
Number of validation images 24
Number of testing images 24
Selection methods used GAs, Random Selection,

Filter Method, Full Set,

Domain Expert Selection
Fitness functions (meta-models) Artificial Neural Networks,
used (within GAs) Näıve Bayes

Search Method Parameters
Populations 100, 500
Iterations 1000, 10000
Mutation (Flip) Rates 0.05, 0.2
Experimental time 90 days
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Algorithm 1 A filter method, called “Top” for selecting operator
sets. Input: Training data, desired number of operators d in set
Output: Domain specific operator set(s)

1: for each operator A in the full set do
2: for each training datum {attributes,fitness} do
3: if A is present in the training datum then
4: Add this fitness to A’s total
5: Increment count
6: Calculate A’s fitness by dividing total by count
7: Sort actions by their fitness
8: Output top d operators
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Figure 8: MR ADORE’s on-line interpretation accuracy with sets

chosen by GA/NN, GA/NB, domain expert, Top(0-292) of operators,

random(0-292) operators, and the full set of 292 operators. Here

“(0-292)” indicates a random number of operators chosen at each

fold, ranging from 0 to 292.

Both the filter method and the random method of selecting
operators chose variable sized operator sets (changing with
each fold), between 0 and 292 operators (in addition to three
mandatory operators present in each set). We ran 81 cross-
validation folds with the {GAs} ×{NB,NN} set of combina-
tions within the GAMM method, as well as the comparison
methods.

In the image interpretation domain, we are most inter-
ested in the performance of a system on novel images, where
the labeling is not yet known. In MR ADORE, the on-line
module uses a machine-learned control policy to select a la-
beling for novel images. In Figure 8 we show the on-line
image interpretation accuracy of the operator sets chosen
by the six different methods of operator set selection. Fig-
ure 9 demonstrates that the GAMM produces the operator
sets with the best on-line fitness, which combines both inter-
pretation accuracy and execution cost. These figures show
that GAMM is capable of effectively trimming an operator
set to minimize the execution cost while retaining the inter-
pretation accuracy of the full image processing library.

6.2 Improving On-line Performance
The second set of experiments was conducted to explore

the second hypothesis of the paper. Namely, can GAMM
not only speed up learning, but also increase the image in-
terpretation accuracy by eliminating operator sequences?
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Figure 9: MR ADORE’s on-line fitness with sets chosen by

GA/NN, GA/NB (both GAMM), domain expert, Top(0-292) of op-

erators, random(0-292) operators, and the full set of 292 operators.

GAMM matches the fitness of the domain expert set, and greatly

outperforms the Top and Random methods, as well as the full oper-

ator set.

Any policy π other than the optimal policy π∗ will commit
errors in its selection of actions in an MDP. We devised a set
of experiments to simulate the degree of error incurred by
the on-line policy. We did this in an attempt to understand
why, how, and when the on-line module of MR ADORE
chooses sub-optimal final labelings, given an operator set.
We invoked the off-line (oracle) module to test the operator
sets chosen by each method, but introduced random choices
of image interpretations to mimic the mistakes made by the
on-line policy.

First, we ran the off-line module (in the same way as be-
fore) with an ε chance of randomly choosing an image in-
terpretation from the choices generated by an operator set,
and thus a 1−ε chance of choosing the optimal image inter-
pretation (since this is known off-line). Henceforth we will
refer to this model as the ε-perfect control policy.

We evaluated seven methods of choosing operator sets
with MR ADORE running with the optimal off-line policy,
on-line policy and ε-perfect policy with ε ε {0.1, 0.3, 0.5,
0.7, 0.9 and 1}. Results are shown in Figure 10. Note that
with the perfect off-line policy, the GA/NN and GA/NB
sets are the best for image interpretation accuracy, but that
these methods experience a greater accuracy drop than the
Top(50) method once randomness is introduced. We fixed
operator set sizes for the Top method at 50, in order to see
if larger operator sets suffered more loss when the chance for
a random choice was increased, and because GAMM typi-
cally chose operator sets of approximately 50 operators. As
can be seen on the graph, larger operator sets are more sus-
ceptible to interpretation accuracy loss when random choice
is added than are smaller operator sets. This finding sup-
ports the thesis that more choice can be detrimental with a
machine-learned control policy.

6.3 Extensions: Seeding and Elitism
The Top and GAMM methods need not be used disjointly.

We can use the Top method to seed the GAs with sets in
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Figure 10: Three different methods of operator set selection eval-

uated on different control policies. The numbers after the methods

are the average (in parentheses) or fixed (not in parentheses) number

of operators in the selected sets.

their initial population that it deems to be the best for the
given task. The meta-models must also be trained using
these seed operator sets, in order to ensure these poten-
tial solutions are assigned the correct fitness when they are
ranked within the GAs. Thus, the seed operator sets are
added to the training data used in step 2 (after first obtain-
ing their fitnesses using step 1). In our experiments, we use
10 seed operator sets, to see if the GAs can make use of the
information gained through the Top method.

Our implementation of genetic algorithms chooses two
chromosomes to replace with two new chromosomes at each
generation. A weighted random method is used, so that
usually lower ranked chromosomes are chosen for replace-
ment. This leaves open the possible disadvantage of breed-
ing out the best solutions found to date, with the advantage
of avoiding becoming stuck in a local optimum. Still, it
seems counter-intuitive to throw away the best solution(s)
found in the search. Elitism can be used to preserve the top
n action sets, where 0 < n < P (where P is the population
size). We experimented with elitism of one and three (i.e.,
the top three solutions cannot be bred out of the popula-
tion). We chose not to implement seeding in the absence
of any elitism, since the seed sets could potentially be bred
out quickly. Figure 11 shows the comparison of GAMM to
four other operator set selection methods. As representa-
tives of the GA/NN and GA/NB class, we use the average
performance of the sets chosen by the best elitism/seeding
combination. In both cases, seeding the GAs with 10 opera-
tor sets chosen by the Top method and using elitism of one
generated the best results. The GAMM-chosen sets have
performance on par with the domain expert chosen set, and
outperform the other methods.

Table 2 summarizes the experimental results. The three
columns correspond to averages over 34 cross validation folds
(with seeding and elitism used in GAMM) of image inter-
pretation accuracy, execution cost and fitness on novel im-
ages. Image interpretation accuracy is given according to
the pixel-level similarity scoring metric defined in section 2.
Execution cost is given as the percentage of the execution
cost of the full set. Fitness is given as defined at the be-
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Figure 11: Average on-line and off-line fitness of sets chosen by

two GAMM methods, a domain expert, a random method, the Top

method, choosing all operators (the full set). (12 cross-validation
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Table 2: Comparison of the performance of operator sets chosen

by GAMM and a domain expert, and the full operator set.

Accuracy Cost Fitness

GA/NN 0.505 4.7% 0.837

GA/NB 0.513 6.2% 0.836

Domain Expert 0.498 1.5% 0.849

Full Set 0.501 100% 0.357

ginning of this section. Operator sets chosen by GAMM are
competitive with that chosen by a domain expert with three
years of experience with the system, and greatly outperform
the full operator set in terms of both image interpretation
accuracy and execution cost on novel images.

7. CONCLUSIONS AND FUTURE WORK
In this paper we proposed and evaluated a novel domain-

independent method for selecting sets of actions in a Markov
decision process. The method, called GAMM, employs ma-
chine learning to acquire a meta-model for a specific domain
without human intervention. It then conducts an evolution-
ary search in the space of action sets. Aided by a seeding
method called Top and elitism within the GAs, GAMM is
able to select highly compact action subsets without virtu-
ally any performance loss.

When applied in the realm of adaptive image interpreta-
tion systems, GAMM reduced the off-line training time by
95% while retaining the image interpretation quality of the
initial massive image processing library. This is a welcome
step towards the total automation in the design of such sys-
tems as it previously required a domain expert to pick vision
operators, and their parameters, by hand.

Given the promising performance of GAMM in the image
interpretation domain as well as a navigation task [10], it
will be of interest to explore the limits of GAMM’s applica-
bility. We are presently developing several formal measures
of redundancy in action sets and will attempt to correlate
these measures to GAMM’s performance.
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